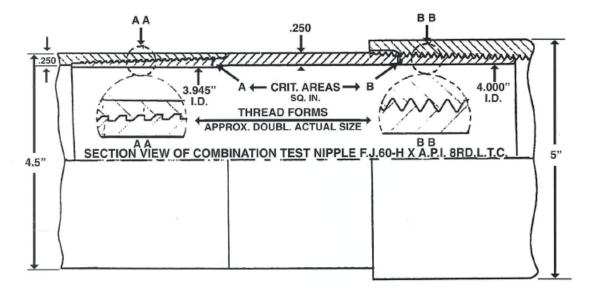


SPECIAL FEATURES

Hook thread prevents jump out and hoop loading caused by tension loads. The elimination of hoop loading improves pressure seal under both tension and compression loading of the joint.

If you want a FLUSH-FLUSH O.D. JOINT, this is the best joint for you. It is economical, dependable, and fast running.


WOOLLEY FLUSH JOINT LINER TECHNICAL DATA

4"	10.46 lbs/ft	FJ-HS	J55	N80	P110
PIPE BODY DIMENSIONS					
Nominal Pipe Body O.D. (in)			4.000	4.000	4.000
Nominal Pipe Body I.D. (in)			3.476	3.476	3.476
Nominal Wall Thickness (in)			0.262	0.262	0.262
Nominal Weight (lbs/ft)			11.00	11.000	11.000
Plain End Weight (lbs/ft)			10.46	10.460	10.460
Drift I.D. (in)		3.351	3.351	3.351	
DIDE BODY D	ERFORMANCE DAT	Δ			
Minimum Pipe Body Yield Strength (lbs)			169,200	246,200	338,500
Minimum Collapse Pressure (psi)			6,590	8,800	11,050
Minimum Interal Yield Pressure (psi)			6,300	9,170	12,610
CONNECTION	I DIMENSIONS AND	DEDE DATA			
CONNECTION DIMENSIONS AND PERF. DATA Connection O.D. (in)		4.000	4.000	4.000	
Pin Connection I.D. (in)		3.476	3.476	3.476	
Make-up Loss (in)		2.955	2.955	2.955	
	Critical Area (sq in)		1.722	1.722	1.722
Joint Efficiency (%)		56	56	56	
Reference Minimum Parting Load (lbs)		163,000	172,000	215,000	
Reference String Length (ft)		7,823	9,684	12,861	
Collapse Pressure Rating (psi)		6,590	8,800	11,050	
Internal Pressure Rating (psi)		6,300	9,170	12,610	
PECOMMENT	NED MAKE IID TODO	NIE			
RECOMMENDED MAKE-UP TORQUE Minimum Final Torque (ft/lbs)		1,100	1,300	1,300	
Maximum Final Torques (ft/lbs)		2,200	2,500	2,500	
maximum i illa	ii ioiquos (iiiios)		2,200	2,500	2,500

The content of this Technical Data Sheet is for general information only and does not guarantee performance or imply fitness for a particular purpose, which only a competent drilling professional can determine considering the specific installation and operation parameters. Information that is printed or downloaded is no longer controlled by Woolley Tool Inc. and might not be the latest information. Anyone using the information herein does so at their own risk. To verify that you have the latest Woolley Tool, Inc. technical information, please contact at 903-984-3553 or email at TechnicalSupport@woolleytool.com.

SKETCH TO ILLUSTRATE THE SET UP FOR TENSILE TESTING, PARTING LOAD CAPACITY OF WOOLLEY F.J.60-H FLUSH JOINT THREAD VS. A.P.I., 8RD, L.T.C. THREADS CUT ON OPPOSITE ENDS OF EACH J OR K-55 4 1/2" O.D., 11.60# CASING TEST NIPPLE

Repeated tests with above setup established two things. the A.P.I. 8rd thread always jumped out at approximately 160,000# tension, leaving the flush joint F.J.60-H undamaged and not tested near to its limit.

The setup was then changed to F.J.60-H thread on both ends of the same test nipples in order to determine parting load of the flush joint thread.

On this setup we had repeated parting loads of 196,000# with one test going to 220,000#.

On all tests to ultimate tensile on the F.J.60-H flush joint, there were no jump outs. All pins parted in critical root of the last effective pin thread.

All tension testing started at 100,000#, then increased in tensile steps of 15,000# with Hydrotest to 6,000 psi betwen tensile steps. There were no leaks prior to parting.